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N O N L I N E A R  E F F E C T  O F  E X T E R N A L  L O W - F R E Q U E N C Y  A C O U S T I C S  

ON E I G E N - O S C I L L A T I O N S  IN  A S U P E R S O N I C  B O U N D A R Y  L A Y E R  

S. A. Gaponov ,  I. I. Maslennikova, and V. Yu. Tyushin UDC 532.526 

A method of simulation and results of numerical calculation of the evolution of hydrodynamic 
disturbances in a supersonic boundary layer on a fiat plate under the influence of external 
acoustic waves at Reynolds numbers Re = 220-640 and Mach number M = 2 are described. 
The solution is constructed by the method of expansion with respect to the small parameter; the 
contribution of linear and quadratic terms to the solution is taken into account. The method 
developed allows one to estimate the admissible level of the acoustic field, which does not affect 
the development of eigen-oscillations in the boundary layer. 

I n t r o d u c t i o n .  The problem of nonlinear interaction of acoustic waves and eigen-oscillations in a 
supersonic boundary layer is directly related to the problem of receptivity of steady flows to external actions; 
in the linear formulation, the latter problem involves determination of the amplitude of acoustic vibrations for 
a given magnitude of action. It should be emphasized that,  if the main flow is parallel, external monochromatic 
waves do not excite eigen-oscillations [1]. The problem of excitation of eigen-oscillations by a monochromatic 
acoustic wave owing to nonparallelism of the main flow was considered in the linear formulation for the first 
time by Gaponov [2]. 

In the nonlinear formulation of the problem, the external wave can be considered as a pumping wave 
with eigen-oscillations developing in its field. An example of such a process is the development of disturbances 
in the boundary layer on a model located in the test section of a usual supersonic wind tunnel. The external 
acoustic field is generated by a turbulent boundary layer on the wind-tunnel walls. This leads us to the question 
of tile principal possibility of conducting experiments on linear stability theory, since there are no estimates of 
the admissible level of external  disturbances at present. At the same time, a large number of experiments on 
stability of a supersonic boundary layer was conducted in the T-325 wind tunnel of the Institute of Theoretical 
and Applied Mechanics of Siberian Division of the Russian Academy of Sciences [3]. With respect to linear 
instability, these results are in agreement with the theory, although the possible influence of acoustics on 
the development of instabili ty waves is feared. Therefore, apart from the general theoretical importance, the 
question of nonlinear interaction of external acoustics and eigen-oscillations in the boundary layer is relevant 
from the viewpoint of applications, apart from the general theoretical importance, which is related to the 
possibility of modeling unsteady phenomena. Note that the problem of nonlinear evolution of disturbances in 
a supersonic boundary layer has attracted attention comparatively recently. A detailed review of the literature 
can be found in [4]. 

In the present paper, we consider the interaction of hydrodynamic waves exponentially decaying at 
infinity and an external  acoustic wave within the framework of weakly nonlinear theory. Figure 1 shows 
experimental data  [5] obtained in the T-325 supersonic wind tunnel for M = 2 and dimensionless frequency 
parameter 10-6-10 -s  (curves 1-8 show the energy of eigen-oscillations for the following values of the unit 
Reynolds number: Re1 = 89 �9 106 , 70- 106 , 48- l0 s , 40- 106 , 30. l0 s, 19 �9 l0 s , 15 �9 l0 s , and 6.3. l0 s m -1, 
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respectively). Acoustic disturbances with the greatest amplitude are located in the low-frequency range, 
whereas the frequency of disturbances responsible for the transition is greater by an order of magnitude. The 
objective of the present work is to determine the degree of influence of weakly nonlinear interaction of the 
waves at these different frequencies. The method described by Gaponov and Maslennikova [4] is used, and 
the distinctive feature of the present work is the fact that an acoustic wave, which does not decay at infinity, 
is used as a pumping wave. Therefore, it is necessary to justify the possibility of using amplitude equations 
[4] and indicate the method of calculation of the interaction coefficients. The method developed allows one to 
estimate the admissible level of the acoustic field that does not affect the development of eigen-oscillations in 
the boundary layer. 

Fo rmula t ion  of the  P r o b l e m .  The initial equations for studying the evolution of disturbances in a 
supersonic boundary layer are the Navier-Stokes equations [4]. The dimensionless parameters of the flow can 
be represented as the sum 

Q(z,  y, z, t) = Qb(z, y, z) + eZ(x,  y, z, t), 

where Qb is the solution of steady equations of motion and eZ is the perturbation of the flow parameters 
(c<< l). 

We consider the evolution of disturbances in a supersonic boundary layer on a flat plate at high 
Reynolds numbers Re~. In this case, the main flow is independent of the lateral coordinate and weakly 
depends on x; therefore, we use a parallel flow Qb = Qb(Y) as an approximation of the main flow. The 
disturbance evolution is described by a system of nonlinear equations depending on the main flow. In our 
studies, we impose some additional constraints. In the case of weak nonlinearity, we take into account the 
contribution of only linear and quadratic terms, and viscosity and heat conductivity are taken into account in 
linear terms at higher derivatives, which is valid for e << 1. We introduce an eight-component vector-function 
Z (u, uy,v,p, T, Ty, W, Wy), where u, v, and w are velocity perturbations in the x-, y-, and z-directions, and 
T and p are perturbations of temperature and pressure; the subscript y denotes the derivative. We write 
the system of differential equations in the operator form [4] as LZ  = eM(qij ,  qkt), where i, k = 1 , . . . ,  8; 
j and l = 1, . . .  ,4, qi = qi(zi, zi~,Ziz, Zit) is a four-component vector, the subscripts t, x, and z denote the 
corresponding derivatives, and L is the linear operator 

0 0 0 0 
L =  A N +  B -~x + C -~z + O ~y + E (1) 

(A, B, C, D, and E are matrices depending on the main-flow parameters and transport coefficients: viscosity 

and heat conductivity). 
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The solution of (1) is constructed by the method of expansion in the small parameter  ~ and multiscale 
expansion of the x coordinate, i.e., we introduce a "fast" scale xl = x and a "slow" scale Xi, which is possible 
owing to the large difference between the phase and amplitude variation rates. The scale xl is typical of phase 
variation and Xi is typical of amplitude variation. Taking into account the above said, we assume 

0 0 0 

0 x  - oz--] + 

In this case, Z ~ satisfies the equation 

+ e  2 0 + . . . ,  Z = Z 0 + c Z  1 +E2Z2 + . . . .  

LoZ ~ = 0 or, in expanded form, 

O Z ~ O Z ~ O Z ~ O Z ~ 
A ---~- + B --~x l + C ~z + D --~y + E Z~ = O" (2) 

Since the main flow is independent of xl ("fast" variable), z, and t, the solution Z ~ has the form 

Z ~  Real(~--~ Aj(X)Z~ (3) 
3 

Here Oj = [ aj(x)  dx +/~jz - w i t ,  Aj (X)  are constants, the relations for them will be obtained from the next 
, 8  

approximation, fli are the spanwise wavenumbers, and wi are their frequencies; the meaning of the wavenumber 
aj is explained below. 

We consider the interaction of three waves, which satisfy the resonance conditions: 

82 + 83 = 81, ~2 + ~ s  = ~ l .  (4) 

Substituting (3) into (2), we obtain a system of ordinary differential equations for each Z~ 

dZ~ 
( - iw jA  + io~jB + iSjC + E ) Z  ~ + D dy = 0. (5) 

The explicit form of the matrices A, B, C, D, and E is not presented here; we only note that they are 
determined by the parameters  of the main steady flow, which depends on the y coordinate and Mach (M) and 
Reynolds (Re) numbers. They can be found elsewhere, for example, in [6] and other papers on linear stability 
theory for compressible gas flows, which involves Eqs. (5). The simplest of them are the Dunn-Lin equations 
for compressible gas or the Orr-Sommerfeld equation for subsonic flow. 

In contrast to the case considered in [4], where all the three waves were analogs of the Tollmien- 
Schlichting waves, herc we suggest that one of these waves should degenerate into an acoustic wave at large 
distances from the surface. O~ving to interaction with tile boundary layer, the acoustic wave is a superposition 
of the incident and reflected waves. The problem of linear interaction of a monochromatic wave with the 
boundary layer is described in detail in [2]. 

We assume that  tile subscripts j = 1 and 2 correspond to the Tollmien-Schlichting waves and j = 3 
corresponds to the acoustic wave. The boundary conditions for waves similar to the Tollmien-Schlichting 
waves have the form 

z ~ = z ~ = z ~ = z ~ for y = 0,  (6)  

which corresponds to zero perturbations of velocity (Z ~ Z ~ Z ~ and temperature (Z ~ on the surface and at 
infinity. 

For an analog of an acoustic wave, conditions (6) at y = 0 remain unchanged, and at y = oc, the 
corresponding quantities are determined by the parameters of the incident wave; for y >> 1, they have the 
form 

Z ~ = d(z ~ exp [iA(y - 6)] + qz ~ exp [- iA(y - 6)]). (7) 

Here z ~ and ::o3 are the constant vectors for the incident and reflected waves, q is the complex reflection 
factor, 6 is the boundary-layer  edge, and d is a constant proportional to the strength of the incident wave. 

For Tollmien-Schlichting waves, we have the usual eigenvalue problem, from which we determine c~1 
and ~2, which enter the expression for the phase 0J" For an acoustic wave at y = 0, the conditions are satisfied 
for all values of u3, except for those cases where the reflection factors turn into infinity (see [6]). 
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In the next  approximation,  we obtain the following system of equations: 

3 daj ,,~-/ Om on., 
L~  = - E - ~  B Z ~  exp (iOj) + ira (z k , zp ) 

j - = l  

( the asterisk denotes complex conjugation). We clarify the s t ructure  of components of the vector M = 
M l  + M 2  + M 3  obtained from nonlinear terms. The  nonlinear terms are determined by the sums of paired 

ok, �9 _oj,_, exp (-iOn)).  We can easily see that  the products  (Zq ~ exp ( iOk ) + Zq a k exp (-iO~ ) )( z ~ aj exp ( iOj ) + zp uj 
vector M1 proportional  to exp [i(j31z-wlt)] is de termined by the products  Zq02Zp~ exp [i(02+03)], the vector 
M 2  by the products  ox 03, �9 0* 01_02,_ _, exp [i(01-02)]. Zq zp a la  3 exp [i(01-  3)], and the vector M 3  by the products Zq ~p UlU 2 * 

IfthedetuningsA:,=/(c,2+.3-a,)ax,,A:2=/(.1-.:-a2)dxl, and/X 3=/(.,- :-.3)dxlare 
0 0 0 

small, the right side of the previous equation has resonance components relative to the operator L0 for each 
trio ai, /3i, and wi. According to [4], phase velocities wj/aj in supersonic flows depend weakly on j; hence, 
Ac2j are small quantities. 

Because of degeneration of the operator L0, a limited solution of system (5) is possible if the  right side 
is orthogonal to the solutions of conjugate problems W ~ For Tollmien-Schlichting waves (j = 1 and 2), they 
can be written as 

L o W  ~ = O, w ~ = w ~ = w ~ = w ~ = O for y = 0 ,  er (8) 

The  conjugate problem for an acoustic wave has the form 

L o W  03 = O, w 03 = w 03 = w 03 = w 03 ---~ 0 for y = O, 
(9) 

W~ ~ for y >> 1, 

and q = -q .  With  account of the direct and conjugate problems, we can write the ampli tude equations 

dal da2 da3 
d X  = k l a 2 a 3 e x p ( i A ~ l ) '  d X  = k 2 a l a ~ e x p ( i A ~ 2 ) '  d X  = k3ala~ 'exp( iA~3) '  (10) 

o o  o o  

k j = f ( M k W ~ 1 7 6 1 7 6  j = l ,  2. 
0 0 

Z" Z 
f f 

Here aj are the ampli tudes,  kj are the interaction coefficients, At21 = J ( a 2 + a 3 - a l ) d x l , / k ~ 2  = J ( a l  
0 0 

and Ar = [ ( a l  -- a~ -- 03) dxl  are the detunings relative to streamwise wavenumbers a j ,  W ~ is tile C~2) dz l  , 
0 

solution of the problem conjugate to (5) and (6), the vector M j  is determined by nonlinear terms, and /3 is 
the matr ix depending on the main flow parameters  and transport  coefficients: viscosity and heat conductivi ty 
(see [6]). In the case of parametr ic  development of hydrodynamic waves, the value of the coefficient k3 is not 
impor tant ,  and it was not calculated in this work. 

Thus, the procedure of derivation of Eqs. (10) consists of calculation of the amplitudes of three waves, 
which satisfy the resonance conditions, on the basis of ordinary differential equations (5) with boundary 
conditions (6) and (7), and functions of conjugate problems (8) and (9). 

In the case of parametr ic  development of the Tollmien-Schlichting waves in the field of an acoustic 
wave, where Jail << [a3] and la21 << [a3[, we can consider that  a3 ~ const, and the disturbance related to the 

ac•us t i cwa•e increases inacc• rdancewi th the • inear law•pr •p• r t i •na• • • t • exp( - • •m(a• )dx ) .  Then,  the 
0 

amplification of the ampl i tude  of hydrodynamic waves and the relationship between them at large distances 
x can be es t imated using Eq. (3) and assuming kl, k2, Ac21, and A~2 to vary weakly as functions of X: 

l a 2 / a a l  = ( 1 / a l ) ( d a l / d X )  = vZ~]a3], and (1 /a2 ) (da2 /dX)  = v~ola3l,  where ko = k2kl.  The 
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estimates show that the waves with the greatest real part of the nonlinear growth rate of hydrodynamic waves 
= R e a l  ( v / N )  �9 laal g r o w  most intensely at first. 

We consider the dependence of a ,  on the inclination of the acoustic wave. Using method [4], we can 
show that k0 is an even function of f3- This means that at f13 = 0 the function k0(fl3) takes an extreme value 
(minimum or maximum). As shown in [6], the following conditions are satisfied for a streamwise acoustic wave 
and for Tollmien-Schlichting waves: 

Cl,2 > 1 - -  1/(M cos r c3 < 1 - 1/M. 

Here ck are the phase velocities and r = arctan(fli/ai) is the angle between the wave and the main-flow 
direction. This imposes significant constraints on the region of resonance existence. 

C a l c u l a t i o n  R e s u l t s  a n d  Discuss ion .  The coefficients of nonlinear interaction for resonance triplets 
of waves of the above-discussed type in a supersonic boundary  layer on a flat plate were numerically calculated. 
The steady flow Qb(Y) was self-similar, the stagnation tempera ture  was assumed to be constant and equal 
to 310 K, which corresponds to the wind-tunnel operation regime, the Prandtl  number was Pr = 0.72, 
and the ratio of specific heats was "7 = 1.4. For each wave mode, the dimensionless frequency parameter 
F = 2zrfue/U 2 = w/Re  (Re = Rv/-R-~ ) remained constant ( f  is the disturbance frequency and ue and Ue are 
tile viscosity and free-stream velocity at the boundary-layer edge, respectively). Normalization was performed 

to the boundary-layer thickness ~ = ~/uex/Ue. 
The equations were solved by the fourth-order R u n g e - K u t t a  scheme, the eigenvalues were sought using 

the Newton method, and linearly independent solutions were obtained using the orthogonalization procedure 
[6]. The eigenfunctions of the linear problem for the Tollmien-Schlichting waves were normalized so that 

sup [Z~(y)[ = 1 (j = 1, 2). The functions of the linear problem for an acoustic wave were normalized to 

tile unit streamwise perturbation of the incident wave velocity. The parameters of the acoustic wave and the 
Tollmien-Schlichting waves were chosen with account of experimental  research conducted in the T.325 wind 
tunnel [7]. 

The calculations were conducted for M = 2, Re = 220-640, fundamental wave frequency F] = 
(0.25-0.90) �9 l0 -4, acoustic wave frequency F3 = (0.447-0.950) �9 10 -5, and angles of the fundamental wave 
relative to the flow r = 30-60 ~ Spanwise wave numbers satisfied condition (4):/~1 =/32 and/~3 = 0. The phase 
velocity of the acoustic wave was synchronized with the phase velocity of the second Tollmien-Schlichting 
wave, and the detunings Ao~ remained small everywhere. As a result of the calculations, we determined 
the fields of interaction coefficients, wavenumbers, velocities, and reflection factors for the acoustic wave as 
functions of the Reynolds numbers for different frequencies and angles of the triplet relative to the flow at 
M = 2 on a flat plate. 

It follows from the calculations that, for the frequencies of the fundamental wave F1 = 0.35 �9 l0 -4 and 
acoustic wave F3 = 0.047- 10 -4,  there exists a range of angles of the triplet (about  50 ~ where the growth rate 
of the interaction coefficients is maximum. Figure 2 shows absolute values of ki (i = 1, 2) as functions of Re 
for the triplet angle r = 50 ~ and the above-mentioned wave frequencies. For other values of/ '1 and /'3, the 
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maximum growth rates of the interaction coefficients were obtained for the same angle of the triplet. It is seen 
from Fig. 2 that the interaction coefficient of the fundamental (first) hydrodynamic wave is approximately 
twice the interaction coefficient of the second wave. This ratio is also observed for different parameters of the 
triplet of a given configuration. 

The calculations for different F1 at a fixed frequency of the acoustic wave F3 = 0.047.10 .4 and angle of 
the triplet ~bl = 50 ~ showed that the maximum values of ki,2 are obtained for the frequency F1 = 0.5-10 -4. The 
calculation results for these parameters are plotted in Fig. 3 (the notation is the same as in Fig. 2). It follows 
from the calculation that the phase velocities of the Tollmien-Schlichting waves increase with increasing Re; 
therefore, any triplet synchronized in phase velocities is destroyed at rather high Re. This instant is seen in 
the figure as a drastic decrease in the interaction coefficients. 

Thus, hydrodynamic waves with a ,-,50 ~ inclination and the dimensionless frequency parameter close 
to 0.5 �9 l0 -4 experience the maximum effect of acoustics. 

As already noted, all the calculations were conducted for/33 = 0. However, the maximum linear effect 
of acoustics is observed at/33 other than zero [8]. This question remains open and, hence, further calculations 
should be performed for/33 # 0. 

Finally, we note that the interaction coefficients in our case are smaller by an order of magnitude 
than in the case of subharmonic resonance of hydrodynamic waves (see [4]). This fact is related to a large 
difference in frequency of the external field and Tollmien-Schlichting waves. Since the weakly nonlinear action 
is proportional to the amplitude of the external acoustic wave, it is negligibly small for low-turbulence wind 
tunnels (for example, T-325 at the Institute of Theoretical and Applied Mechanics of Siberian Division of the 
Russian Academy of Sciences). As the Mach number increases, the hydrodynamic and acoustic frequencies 
should become closer. In addition, the levels of acoustic and induced oscillations inside the boundary layer 
increase with increasing Mach number [9]. Therefore, the conclusion about the weak effect of acoustics on 
the degree of amplification of the Tollmien-Schlichting waves cannot be automatically extended to the case 
of high Math numbers. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
0t580). 
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